CAO: Lecture 25 Micro Instruction Sequencing

Topics Covered

- Microprogrammed control
- Comparison of control unit implementations
- Microinstruction sequencing
- Conditional branch
- Mapping of instructions
- Microprogram example

MICROPROGRAMMED CONTROL

- Control Memory
- Sequencing Microinstructions
- Microprogram Example
- Design of Control Unit
- Microinstruction Format
- Nanostorage and Nanoprogram

COMPARISON OF CONTROL UNIT IMPLEMENTATIONS

Microprogram

TERMINOLOGY

Microprogram

- Program stored in memory that generates all the control signals required to execute the instruction set correctly
- Consists of microinstructions

Microinstruction

 Contains a control word and a sequencing word Control Word - All the control information required for one clock cycle Sequencing Word - Information needed to decide

the next microinstruction address

- Vocabulary to write a microprogram

Control Memory(Control Storage: CS)

- Storage in the microprogrammed control unit to store the microprogram

Writeable Control Memory(Writeable Control Storage:WCS)

- CS whose contents can be modified
 - -> Allows the microprogram can be changed
 - -> Instruction set can be changed or modified

Dynamic Microprogramming

- Computer system whose control unit is implemented with a microprogram in WCS
- Microprogram can be changed by a systems programmer or a user

TERMINOLOGY

Sequencer (Microprogram Sequencer)

A Microprogram Control Unit that determines the Microinstruction Address to be executed in the next clock cycle

- In-line Sequencing
- Branch
- Conditional Branch
- Subroutine
- Loop
- Instruction OP-code mapping

MICROINSTRUCTION SEQUENCING

Sequencing Capabilities Required in a Control Storage

- Incrementing of the control address register
- Unconditional and conditional branches
- A mapping process from the bits of the machine
 - instruction to an address for control memory
- A facility for subroutine call and return

CONDITIONAL BRANCH

Conditional Branch

If Condition is true, then Branch (address from the next address field of the current microinstruction) else Fall Through Conditions to Test: O(overflow), N(negative), Z(zero), C(carry), etc.

Unconditional Branch

Fixing the value of one status bit at the input of the multiplexer to 1

MAPPING OF INSTRUCTIONS

Mapping from the OP-code of an instruction to the address of the Microinstruction which is the starting microinstruction of its execution microprogram

Mapping function implemented by ROM or PLA

MICROPROGRAM EXAMPLE

Computer Configuration